Math, asked by radhikaagarwal37001, 1 year ago

Prove that 1+seca+tana=2/1+cota-coseca

Answers

Answered by smartybabu
0
L.H.S = ( 1+ cota-coseca) ( 1+ tana -seca)
Step-by-step explanation:
= (1+cosa/sina-1/sina) (1+sina/cosa-1/cosa)
= (sina+cosa-1/sina) (cosa+sina-1/cosa)
= ((sina+cosa) - (1)/sina) ((cosa+sina) - (1)/cosa)
= ((sina+cosa)raise to power2 - (1)raise to power 2)/sinacosa
= sin2a+cos2a+2sinacosa-1/sinacosa
= 1+2sinacosa-1/sinacosa (because sin2a+cos2a=1)
= 2sinacosa/sinacosa
=2
=R.H.S

smartybabu: hii
smartybabu: plzz marks on brainly
Answered by sandy1816
0

(1 + seca + tana)(1 + cota - coseca) \\  \\  = ( \frac{cosa + 1 + sina}{cosa} )( \frac{sina + cosa - 1}{sina} ) \\  \\  =  \frac{( {cosa + sina})^{2} - 1 }{sinacosa}  \\  \\  =  \frac{2sinacosa}{sinacosa}  \\  \\  = 2

Similar questions