Math, asked by samrithaaprabakar, 9 months ago

prove that:

1+(secA -tanA)^2
________________=2 tanA
cosecA(secA -tanA)

Answers

Answered by tennetiraj86
89

Answer:

answer for the given problem is given

Attachments:
Answered by BrainlyTornado
68

QUESTION:

\sf{Prove \ that\ \dfrac{1+(sec\ A-tan \ A)^2}{cosec \  A(sec\ A-tan \ A)}=2tan \ A}

GIVEN:

\sf{ \dfrac{1+(sec\ A-tan \ A)^2}{cosec \  A(sec\ A-tan \ A)}=2tan \ A}

TO PROVE:

\sf{ \dfrac{1+(sec\ A-tan \ A)^2}{cosec \  A(sec\ A-tan \ A)}=2tan \ A}

FORMULAE:

★ 1 = Sec² A - Tan² A

★ (A - B)² = (A - B)(A - B)

★ A² - B² = (A + B)(A - B)

★ Sec A = 1 / Cos A

★ Cosec A = 1 / Sin A

PROOF:

\sf{ Take \ \dfrac{1+(sec\ A-tan \ A)^2}{cosec \  A(sec\ A-tan \ A)}\ as \ L.H.S}

\sf{Take \ 2tan \ A\ as \ R.H.S}

1 = Sec² A - Tan² A

\sf{=\dfrac{sec^2\ A - tan^2 A+(sec\ A-tan \ A)^2}{cosec \  A(sec\ A-tan \ A)}}

\bf{Take \ sec\ A - tan \ A\ as\ common}

\sf{=\dfrac{sec\ A - tan \ A\ (sec\ A + tan A+sec\ A-tan \ A)}{cosec \  A(sec\ A-tan \ A)}}

\sf{=\dfrac{sec\ A + tan A+sec\ A-tan \ A}{cosec \  A}}

\sf{=\dfrac{ 2sec\ A}{cosec \  A}}

\sf{=\dfrac{ \dfrac{2}{cos\ A}}{\dfrac{1}{sin\ A}}}

\sf{=\dfrac{2sin\ A}{cos\ A}}

\boxed{\gray{\bold{\large{\dfrac{2sin\ A}{cos\ A}= 2 tan \ A}}}}

L.H.S = R.H.S

\sf{ \gray{ \dfrac{1+(sec\ A-tan \ A)^2}{cosec \  A(sec\ A-tan \ A)}=2tan \ A}}

HENCE PROVED.

Similar questions