Math, asked by ADAMSHARIEFF, 1 year ago

Prove that 1÷secA+tanA=secA-tanA

Answers

Answered by Vinayak333
2

In LHS
=1÷(secA+tanA)
rationalising
=1×(secA-tanA)/(secA+tanA)×(secA-tanA)
=secA-tanA/sec²A-tan²A
we knows the trigonometry identity that is
1+tan²A=sec²A
so, 1=sec²A-tan²A
Now,
=secA-tanA/1
that is secA-tanA=secA-tanA
LHS=RHS
Hence proved
I HOPE THIS WILL HELP YOU MARK ME BRAINLIEST

ADAMSHARIEFF: sure will
Vinayak333: it's OK bro
Vinayak333: mark me BRAINLIEST
ADAMSHARIEFF: how do mark u brainliest
ADAMSHARIEFF: im actually new to brainly
Vinayak333: after solving 2nd person
Vinayak333: by choose the answer best one
ADAMSHARIEFF: oh ok bye
Vinayak333: out of 2 answers
Vinayak333: bye
Answered by Aasiyaalmani123
3
solution:
taking  l.h.s
BY RATIONALIZING

              1                               secA - tanA
      -----------------------  *         ----------------------- 
           secA + tan A                SECA - TanA
 

                             secA - tan A
                        -------------------------
                        [secA]^2 - [tanA]^2

                           as sec2 - tan2 = 1

                             secA-tanA
                             ----------------
                                   1

                             l.h.s = r.h.s.......
hope u like it









Aasiyaalmani123: if u like it mark it as brainlist i need it
ADAMSHARIEFF: im sorry im done marking vinayak as the branliest but thanks for answering
Aasiyaalmani123: its fine
Aasiyaalmani123: delete my answer
ADAMSHARIEFF: why
Aasiyaalmani123: leave it
ADAMSHARIEFF: ok
Similar questions