Prove that 1÷secA+tanA=secA-tanA
Answers
Answered by
2
In LHS
=1÷(secA+tanA)
rationalising
=1×(secA-tanA)/(secA+tanA)×(secA-tanA)
=secA-tanA/sec²A-tan²A
we knows the trigonometry identity that is
1+tan²A=sec²A
so, 1=sec²A-tan²A
Now,
=secA-tanA/1
that is secA-tanA=secA-tanA
LHS=RHS
Hence proved
I HOPE THIS WILL HELP YOU MARK ME BRAINLIEST
ADAMSHARIEFF:
sure will
Answered by
3
solution:
taking l.h.s
BY RATIONALIZING
1 secA - tanA
----------------------- * -----------------------
secA + tan A SECA - TanA
secA - tan A
-------------------------
[secA]^2 - [tanA]^2
as sec2 - tan2 = 1
secA-tanA
----------------
1
l.h.s = r.h.s.......
hope u like it
taking l.h.s
BY RATIONALIZING
1 secA - tanA
----------------------- * -----------------------
secA + tan A SECA - TanA
secA - tan A
-------------------------
[secA]^2 - [tanA]^2
as sec2 - tan2 = 1
secA-tanA
----------------
1
l.h.s = r.h.s.......
hope u like it
Similar questions