Math, asked by meetmangu069, 9 months ago

prove that

1+secQ-tanQ/1+secQ+tanQ = 1-sinQ/cosQ

Answers

Answered by Rajshuklakld
2

Question:-to prove

 \frac{1 + sec \alpha  - tan \alpha }{1 + sec \alpha  + tan \alpha } =  \frac{1 - sin \alpha }{cos \alpha }

Proof:-Take LHS

Put

1=sec^2a-tan^2 in numerator

 \frac{ {sec}^{2} \alpha  -  {tan}^{2}  \alpha  + sec \alpha  - tan \alpha  }{1 + sec \alpha  + tan \alpha }  \\  \frac{(sec \alpha  - tan \alpha )(sec \alpha  + tan \alpha ) + (sec \alpha  - tan \alpha )}{1 + sec \alpha  + tan \alpha } \\ taking \: (sec \alpha  - tan \alpha ) \: as \: commom \: from \: numerator \\ \frac{(sec \alpha  - tan \alpha )(1 + sec \alpha  + tan \alpha )}{(1 + sec \alpha  + tan \alpha )}   \\ (1 + sec \alpha  + tan \alpha  \:) \: will \: be \: cancelled \: out \\  = sec \alpha  - tan \alpha  \\ now \: convert \: \: seca \:  \alpha  \: and \: tan \alpha  \: into \: sin \alpha  \: and \: cos \alpha  \\  \frac{1}{cos \alpha }  -  \frac{sin \alpha }{cos \alpha } \\  =  \frac{1 - sin \alpha }{cos \alpha }

which is eqaul to RHS

{hope it helps you}

Similar questions