Math, asked by alexskywalker, 9 months ago

prove that 1 + sin/
1 - sin =
(tan + sec )2​

Answers

Answered by senboni123456
1

Step-by-step explanation:

we have,

 \frac{1 +  \sin( \alpha ) }{1 -  \sin( \alpha ) }  =  \frac{(1 +  \sin( \alpha ))^{2}  }{(1 -  \sin( \alpha )) \times (1 +  \sin( \alpha ))  }   =  \frac{(1 +  \sin( \alpha ))^{2}  }{1 -  { (\sin( \alpha ) )}^{2} }

 =  \frac{(1 +   \sin( \alpha ))^{2}   }{ { (\cos( \alpha ) )}^{2} }

 = ( \frac{1 +  \sin( \alpha ) }{ \cos( \alpha ) } )^{2} = ( \frac{1}{\cos( \alpha ) } +  \frac{ \sin( \alpha ) }{ \cos( \alpha ) } )^{2}  = ( { \tan( \alpha )  } +  \sec( \alpha ) )^{2}

Similar questions