Math, asked by shivanishivu3347, 2 months ago

Prove that √1-sin^2/sin^2=cot

Answers

Answered by nikithaaathukuri36
1

Step-by-step explanation:

root 1-sin square x = cosx

root sin square x = sinx(after cancellation of root and square)

cosx/sinx=cotx

Hence proved

I HOPE THIS WILL HELP YOU

Answered by LoverBoy346
0

Step-by-step explanation:

To prove:-

 \sqrt{ \frac{1 -  { \sin}^{2} \theta }{ { \sin}^{2} \theta } }  =  \cot \theta

Proof:-

LHS = \sqrt{ \frac{1 -  { \sin}^{2} \theta }{ { \sin}^{2} \theta } }

 \implies \:  \frac{ \not \sqrt{ { \cos}^{ \not2}  \theta} }{    \not\sqrt{{sin}^{ \not2}  \theta} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( {1 -  { \sin}^{  2}  \theta} =  { \cos}^{2}  \theta)

 \implies \:  \frac{ \cos \theta}{ \sin \theta}

 \implies \:  \cot \theta = RHS

Since LHS = RHS, hence proved

Similar questions