Math, asked by meoc856pcmrtw, 1 year ago

prove that 1-sin^2x/1+cotx-cos^2x/1+tanx=sinxcossx

Answers

Answered by MaheswariS
7

\textbf{To prove:}

1-\dfrac{sin^2x}{1+cot\,x}-\dfrac{cos^2x}{1+tan\,x}=sinx\,cosx

\textbf{Solution:}

\text{Consider,}

1-\dfrac{sin^2x}{1+cot\,x}-\dfrac{cos^2x}{1+tan\,x}

=1-\dfrac{sin^2x}{1+\frac{cos\,x}{sin\,x}}-\dfrac{cos^2x}{1+\frac{sin\,x}{cos\,x}}

=1-\dfrac{sin^3x}{sin\,x+cos\,x}-\dfrac{cos^3x}{sin\,x+cos\,x}

=\dfrac{(sin\x+cos\,x)-sin^3x-cos^3x}{sin\,x+cos\,x}

=\dfrac{(sin\x+cos\,x)-(sin^3x+cos^3x)}{sin\,x+cos\,x}

=\dfrac{(sin\x+cos\,x)-(sin\,x+cos\,x)(sin^2x-sin\,x\,cos\,x+cos^2x)}{sin\,x+cos\,x}

=\dfrac{(sin\x+cos\,x)-(sin\,x+cos\,x)(1-sin\,x\,cos\,x)}{sin\,x+cos\,x}

=(sin\x+cos\,x)(\dfrac{1-(1-sin\,x\,cos\,x)}{sin\,x+cos\,x})

=1-(1-sin\,x\,cos\,x)

=1-1+sin\,x\,cos\,x

=sin\,x\,cos\,x

\implies\boxed{\bf\,1-\dfrac{sin^2x}{1+cot\,x}-\dfrac{cos^2x}{1+tan\,x}=sinx\,cosx}

Find more:

If sinθ+cosθ=x prove that sin6θ+cos6θ=4-3(x²-1)²/4

https://brainly.in/question/15923140

If l tan A + m sec A = n and l’tan A – m’sec A = n’, then show that (nl’ – ln’/ml’ + lm’)^2 = 1 + (nm’ – mn’/ lm’ + ml’) ^2

https://brainly.in/question/683329

Similar questions