Math, asked by sarojaya72, 5 months ago

Prove that :(1) sin 60° cos 30°+ cos 60° sin 30°= 1
(2) 3 cosec ²60° - 2cot square 2 30° + Sec square2 45°=0​

Answers

Answered by Aakrishisinha
2

Answer:

see the attachment....

Step-by-step explanation:

hope it helps you..... Mark this as BRAINLIEST...

Attachments:
Answered by Anonymous
1

Kindly click on brainliest option below :)

Solution:

1 ) sin 60° cos 30° + cos 60° sin 30° = 1

 \sf  =  \dfrac{ \sqrt{3} }{2}  \times  \dfrac{ \sqrt{3} }{2}  +  \dfrac{1}{2}  \times  \dfrac{1}{2}

 \sf = { \huge (}{ \dfrac{ \sqrt{3} }{2} { \huge)}}^{2}  + { \huge(} {\dfrac{1}{2}} { \huge)}^{2}

 \sf =  \dfrac{3}{4}  +  \dfrac{1}{4}

 \sf =  \dfrac{3 + 1}{4}

 \sf =  \dfrac{4}{4}

 \sf = 1

Hence Proved!!

2) 3 cosec² 60° - 2 cot² 30° + sec² 45°= 0

 \sf = 3 \times{ { \huge(} \dfrac{ 2 }{ \sqrt{3} } { \huge)} }^{2}  - 2 \times   { (\sqrt{3} )}^{2}  +  { (\sqrt{2} )}^{2}

 \sf = 3 \times  \dfrac{4}{3}  - 2 \times 3 + 2

 \sf =  \cancel3 \times  \dfrac{4}{ \cancel3}   - 6 + 2

 \sf = 4 - 6 + 2

 \sf = 6 - 6

 \sf = 0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions