Math, asked by Kanika984, 11 days ago

Prove that -

√1+sin A/1-sin A = sec A + tan A

Answers

Answered by Anonymous
122

Question :-

\displaystyle{\implies\sf\sqrt{ \frac{ 1 + sin \: A}{1 - sin \: A }}= sec \: A + tan \: A}

Answer :-

\sf{ L.H.S = R.H.S}

step by step explanation :-

{ \sf{Refer  \: in \:  the  \: attachment !}}

Attachments:
Answered by IIMrVelvetII
60

QUESTION :- Prove that \sqrt{ \frac{1 +  \sin \: A}{1 -  \sin \: A}} =  \sec \: A +  \tan \: A

SOLUTION :-

→\sqrt{ \frac{1 + \sin \: A}{1 - \sin \: A}}

⇒Rationalizing the terms,

→\sqrt{ \frac{1 + \sin \: A}{1 - \sin \: A} \times  \frac{1 + \sin \: A}{1 + \sin \: A}}

→ \sqrt{ \frac{{(1 + \sin \: A)}^{2}}{ {1}^{2} +  {(\sin \: A)}^{2} } }

⇒Canceling root for numerator,

→ \frac{1 + \sin \: A}{ \sqrt{1 -  {\sin}^{2} \: A} }

⇒Canceling root and 2 power of denominator,

→ \frac{1 + \sin \: A}{\sqrt{ {\cos}^{ \cancel2}\: A} }

→ \frac{1 + \sin \: A}{\cos \: A}

→ \frac{1}{\cos \: A} +  \frac{\sin \: A}{\cos \: A}

⇒We know that,

 \frac{1}{ \cos \theta } =  \sec \theta and  \frac{\sin \theta}{ \cos \theta} =  \tan \theta

⇒Therefore,

 =  \sec \: A +  \tan \: A

 \therefore\sqrt{ \frac{1 +  \sin \: A}{1 -  \sin \: A}} =  \sec \: A +  \tan \: A

LHS = RHS

Hence Proved.

Similar questions