prove that
1. sin(A - B) = sinAcos B - cos AsinB
2. cos(A + B) = cos AcosB – sin Asin B
3. cos(A - B) = cos AcosB + sinAsinB
4. 2tan B= tan2B /1- tan2B
Answers
Answered by
0
Answer:
sinB
sinA
=p;
cosB
cosA
=q
sinA=psinB−−−(1);cosA=qcosB−−−(2)
tanA=
q
p
tanB−−−(3)(dividing(1)by(2))sinAcosA=pqsinBcosB(Multiply(1)&(2))
cos
2
Acos
2
B
sinAcosA
=
cos
2
Acos
2
B
pqsinBcosB
=sec
2
BtanA=pqsec
2
AtanB
=(1+tan
2
B)tanA=pq(1+tan
2
A)tanB
=[1+(
q
p
tanA)
2
]tanA=pq(1+tan
2
A).
q
p
tanA(by(3))
=1+
q
2
p
2
tan
2
A=q
2
+q
2
tan
2
A
=tan
2
A(
p
2
q
2
−q
2
)=q
2
−1
=tan
2
A
q
2
−p
2
q
2
(q
2
−1)p
2
tanA=
q
2
(p
2
−1)
p
2
(1−q
2
)
=
q
p
p
2
−1
1−q
2
tanB=
p
2
−1
1−q
2
Similar questions
Social Sciences,
3 hours ago
Math,
3 hours ago
English,
5 hours ago
Biology,
8 months ago
Physics,
8 months ago