Prove that:
(1-sin A +cos a) = 2(1-sin A) (1+COSA)
Answers
Answered by
1
Consider the LHS:
(1-sinA+cosA)2 = [(1-sinA) + cosA]2
= (1-sinA)2 + cos2A + 2(1-sinA)cosA
= 1 + sin2A − 2sinA + cos2A + 2(1-sinA)cosA
= 1 + (sin2A + cos2A) − 2sinA + 2(1-sinA)cosA
= 1 + 1 − 2sinA + 2(1-sinA)cosA
[Since,sin2+cos2A=1]
= 2 − 2sinA + 2(1-sinA)cosA
= 2(1 − sinA) + 2(1-sinA)cosA
= 2(1 − sinA)(1 + cosA)
= RHS
THANK YOU!
Similar questions