Math, asked by joya467, 9 months ago

Prove that ( 1 + sin A / cos A) + cos A /( 1+ sin A) = 2 cos A ​

Answers

Answered by Anonymous
3

Correct question

\rm  \implies  \dfrac{1 +  \sin  A}{ \cos A}  +  \dfrac{ \cos A}{1 +  \sin A}  = 2  \sec A

Solution:-

 \rm  \implies  \dfrac{1 +  \sin  A}{ \cos A}  +  \dfrac{ \cos A}{1 +  \sin A}  = 2  \sec A

Taking lcm

  \rm\implies \dfrac{(1 +  \sin A)(1 +  \sin A) + \cos A \times  \cos A}{ \cos A(1 +  \sin A)}

 \rm \implies \dfrac{(1 +  \sin A) ^{2} +  \cos  {}^{2} A }{ \cos A +  \sin A \times  \cos A}

Using this identities (a² + b² ) = a² + b² + 2ab

 \rm \implies \dfrac{1 +  \sin {}^{2} A + 2 \sin A  +  \cos {}^{2}  A}{\cos A(1 +  \sin A) }

\rm \implies \dfrac{1 +  1 + 2 \sin A  }{\cos A(1 +  \sin A) }

\rm \implies \dfrac{2 + 2 \sin A  }{\cos A(1 +  \sin A) }

 \rm \implies \dfrac{2(1 + \sin A ) }{\cos A(1 +  \sin A) }

\rm \implies \dfrac{2 \cancel{(1 + \sin A )} }{\cos A \cancel{(1 +  \sin A) }}

 \rm \implies \dfrac{2 }{\cos A}

 \rm \: 2 \sec A

Similar questions