Prove that 1/(sinθ+cosθ)+1/(sinθ–cosθ)=2sinθ/(1–2cos^2θ)
Answers
Answered by
5
To prove :
1/(sinθ + cosθ) + 1/(sinθ - cosθ)
= 2 sinθ/(1 - 2 cos²θ)
Proof :
Now, 1/(sinθ + cosθ) + 1/(sinθ - cosθ)
= {(sinθ - cosθ) + (sinθ + cosθ)}/{(sinθ + cosθ)(sinθ - cosθ)}
= (sinθ + cosθ + sinθ - cosθ)/(sin²θ - cos²θ)
= 2 sinθ/(1 - cos²θ - cos²θ)
= 2 sinθ/(1 - 2 cos²θ)
⇒ 1/(sinθ + cosθ) + 1/(sinθ - cosθ)
= 2 sinθ/(1 - 2 cos²θ)
Hence, proved.
Trigonometric Rules :
• sin²θ + cos²θ = 1
• sec²θ - tan²θ = 1
• cosec²θ - cot²θ = 1
Swarup1998:
:-)
Similar questions