prove that (1+sin-cos)2/(1+sin+cos)2=1-cos/1+cos
Answers
Answered by
18
LHS:
Expand the fractions using (a+b+c)²=a²+b²+c²+2ab+2bc+2ca.
Rearrange the terms.
We know that cos²A+sin²A=1.
Now here, take -2cos common from the numerator and +2cos common from the denominator.
Now, rearrange the terms, add 1 and 1 and take 2 common.
Take 2 common.
Take (1+sin) common.
LHS=RHS.
HENCE PROVED!
FUNDAMENTAL TRIGONOMETRIC RATIOS:
T-RATIOS:
Answered by
6
Answer:
LHS=(1−sinθ+cosθ)
LHS=1+sin θ+cos θ−2sinθ+2cosθ−2sinθcosθ
LHS=2−2sinθ+2cosθ−2sinθcosθ
LHS=2(1−sinθ)+2cosθ(1−sinθ)
LHS=2(1−sinθ)(1+cosθ)=RHS
Similar questions