Prove that (1-sin+cos)²=2(1+cos)(1-sin)
Answers
Answer:
Explanation:
the image below gives you the answer
- We need to prove that (1-sinA+cosA)²=2(1+cos)(1-sin).
LHS:
▣ Simplify using (a+b+c)²=a²+b²+c²+2ab+2bc+2ca.
▣ Rearrange the terms.
▣ We know that cos²θ+sin²θ=1.
▣ Now, rearrange the terms.
▣ Take 2cos common and 2 common.
▣ Take (1-sinA) common.
▣ Take 2 common.
LHS=RHS.
HENCE PROVED.
FUNDAMENTAL TRIGONOMETRIC IDENTITIES:
T-RATIOS:
[tex]\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 & \sqrt{3} & \rm Not \: De fined \\ \\ \rm cosec A & \rm Not \: De fined & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm Not \: De fined \\ \\ \rm cot A & \rm Not \: De fined & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array} [/tex]