Math, asked by sakthivarshini, 5 months ago

prove that
1+ sin thetha -costhetha/1 + sinthetha+costhetha=tanthetha/2 pls help me to solve this I will mark u as the brainliest and vote u r every answer​

Answers

Answered by baranishanmu
1

Step-by-step explanation:

L.H.S

=

sinθ+cosθ−1

sinθ−cosθ+1

=

tanθ−secθ+1

tanθ+secθ−1

=

tanθ−secθ+1

(tanθ+secθ)−(sec

2

θ−tan

2

θ)

=

tanθ−secθ+1

(tanθ+secθ)−(secθ−tanθ)(secθ+tanθ)

=

(1−secθ+tanθ)

(tanθ+secθ)(1−secθ+tanθ)

=secθ+tanθ

Congugate multiplying by secθ−tanθ

=

secθ−tanθ

sec

2

θ−tan

2

θ

=

secθ−tanθ

1

Answered by aryan073
2

Given:

  \\ \red \bigstar \tt \:  \frac{1 + sin \theta - cos \theta}{1 + sin \theta + cos \theta}  =  \frac{tan \theta}{2}

________________________________________

To Prove:

 \\  \purple\bigstar \tt \:  \frac{1 + sin \theta - cos \theta}{1 + sin \theta + cos \theta}  =  \frac{tan \theta}{2}

________________________________________

Formulas:

\underline{\bf{\bullet \: Using \: the \: trigonometry \: identities \: we \: can \: write, }}

 \\   \tt \: (1) \: sin \theta = 2sin\frac{ \theta}{2} cos \frac{ \theta}{2}

  \\ \tt \: (2) \: cos \theta = 2  {cos}^{2}  \frac{ \theta}{2}  - 1

  \\ \tt \: (3) \:cos \theta = 1 - 2 {sin}^{2}  \frac{ \theta}{2}

________________________________________

Proof:

Taking LHS.

  \\ \implies \sf \: lhs \:  =  \frac{1 + sin \theta - cos \theta}{1 + sin \theta + cos \theta}  \\  \\

Applying these identities :

 \\  \implies \sf lhs = \frac{1 + sin \theta - cos \theta}{1 + sin \theta + cos \theta}  \\  \\   \\  \implies \sf \: lhs =  \frac{1 + 2sin \frac{ \theta}{2}cos \frac{ \theta}{2}  - 1 + 2 {sin}^{2} \frac{ \theta}{2}   }{1 + 2sin \frac{ \theta}{2}cos  \frac{ \theta}{2} + 2 {cos}^{2}  \frac{ \theta}{2}   - 1}  \\  \\  \\  \implies \sf \: lhs =  \frac{2sin  \frac{ \theta}{2} cos \frac{ \theta}{2} + 2 {sin}^{2}  \frac{ \theta}{2}  }{2sin \frac{ \theta}{2}cos \frac{ \theta}{2}   + 2 {cos}^{2} \frac{ \theta}{2}  }  \\  \\  \\  \implies \sf \: lhs =  \frac{2sin \frac{ \theta}{2} cos \frac{ \theta}{2}  + sin \frac{ \theta}{2} }{2cos  \frac{ \theta}{2}sin \frac{ \theta}{2}  + cos \frac{ \theta}{2}  }

Cancelling the like terms :

 \\  \implies \sf \: lhs =  \frac{sin \frac{ \theta}{2} }{cos  \frac{ \theta}{2} }  \\  \\  \implies \sf \: lhs = tan \frac{ \theta}{2}  \\  \\  \implies \sf \: lhs = rhs

 \red \bigstar \boxed{ \sf{ \therefore \:  \frac{1 + sin \theta - cos \theta}{1 + sin \theta + cos \theta}  = tan \frac{ \theta}{2} }}

Hence proved!

Similar questions