Math, asked by dhrubajyoti5, 9 months ago

prove that 1+sin2a/cos2a= sina+cos a/sina-cosa​

Answers

Answered by mysticd
2

 LHS = \frac{1+sin2A}{cos2A} \\= \frac{sin^{2}A+cos^{2}A+2sinAcosA}{cos^{2}A-sin^{2}A }

 \underline { \blue { Using \: following \:formulae :}}

  • Sin²A + Cos²A = 1
  • Sin2A = 2sinAcosA
  • cos2A = cos²A - sin²A
  • ++2ab = (a+b)²
  • -b² = (a+b)(a-b)

 = \frac{(sinA+cosA)^{2}}{(SinA+cosA)(sinA-cosA)} \\= \frac{sinA+cosA}{SinA-cosA}\\=RHS

Therefore.,

 \red{\frac{1+sin2A}{cos2A}}\green {=\frac{sinA+cosA}{SinA-cosA}}

•••♪

Similar questions
Math, 9 months ago