Math, asked by Anonymous, 4 days ago

prove that 1+sin2theta-cos2theta/1+sin2theta+cos2theta=tantheta

Answers

Answered by EmperorSoul
4

Given:

\dashrightarrow\pink{ \boxed{\sf{\sf1+sin \: 2 \: theta-cos \: 2 \: theta}}}

To Prove:

 \longmapsto \sf\frac{1+ \sin 2\theta+\cos2\theta}{1+\sin 2\theta- \cos 2\theta} = \sf \cot \theta

Solution:

 \longmapsto \sf\frac{1+ \sin 2\theta+\cos2\theta}{1+\sin 2\theta- \cos 2\theta}

  \longmapsto\sf \frac{2\cos\theta(\cos\theta+\sin\theta)}{2\sin\theta(\sin\theta+\cos\theta)}

\dashrightarrow\red{ \boxed{\sf{\frac{\cos\theta}{ \:  \:  \:  \:  \:  \sin\theta \:  \:  \:  \:  \:  }}}}

➝ \: \cot\theta

  • RHS

Hence Proved:

 \\{ \underline{ \rule{300pt}{9pt}}}

Similar questions