Prove that
(1 - sin²theta) sec²theta = 1
(1 + Tan ²theta)cos²theta = 1
Answers
Answered by
153
✬ LHS = RHS ✬
Step-by-step explanation:
Given:
- (1 – sin²θ)sec²θ = 1
- (1 + tan²θ)cos²θ = 1
- 2cos²θ + 2/(1 + cot²θ) = 2
To Prove:
- LHS = RHS
Proof: We will use several formulae here
- (sin²θ + cos²θ) = 1
- sec²θ = 1/cos²θ
- 1 + tan²θ = sec²θ
- 1 + cot²θ = cosec²θ
- 1/cosec²θ = sin²θ
[ First ]
(1 – sin²θ)sec²θ = 1
(1 – sin²θ) × 1/cos²θ = 1
cos²θ × 1/cos²θ = 1
1 = 1
________________________
[ Second ]
(1 + tan²θ)cos²θ = 1
sec²θ × 1/sec²θ = 1
1 = 1
________________________
[ Third ]
2cos²θ + 2/(1 + cot²θ) = 2
2cos²θ + 2/cosec²θ = 2
2cos²θ + 2 × 1/cosec²θ = 2
2cos²θ + 2 × sin²θ = 2
2(cos²θ + sin²θ) = 2
2 × 1 = 2
2 = 2
Answered by
98
AnswEr :-
1]
LHS
RHS
2]
LHS
RHS
3]
LHS
RHS
Similar questions