Math, asked by cartostat, 2 months ago

Prove that

(1 - sin²theta) sec²theta = 1

(1 + Tan ²theta)cos²theta = 1

2cos {}^{2}  theta \:  +  \frac{2}{(1 + cot {}^{2}theta } ) = 2

Answers

Answered by pandaXop
153

LHS = RHS

Step-by-step explanation:

Given:

  • (1 – sin²θ)sec²θ = 1
  • (1 + tan²θ)cos²θ = 1
  • 2cos²θ + 2/(1 + cot²θ) = 2

To Prove:

  • LHS = RHS

Proof: We will use several formulae here

  • (sin²θ + cos²θ) = 1

  • sec²θ = 1/cos²θ

  • 1 + tan²θ = sec²θ

  • 1 + cot²θ = cosec²θ

  • 1/cosec²θ = sin²θ

[ First ]

\implies{\rm } (1 – sin²θ)sec²θ = 1

\implies{\rm } (1 sin²θ) × 1/cos²θ = 1

\implies{\rm } cos²θ × 1/cos²θ = 1

\implies{\rm } 1 = 1

\large\purple{\texttt { Proved}}

________________________

[ Second ]

\implies{\rm } (1 + tan²θ)cos²θ = 1

\implies{\rm } sec²θ × 1/sec²θ = 1

\implies{\rm } 1 = 1

\large\orange{\texttt { Proved}}

________________________

[ Third ]

\implies{\rm } 2cos²θ + 2/(1 + cot²θ) = 2

\implies{\rm } 2cos²θ + 2/cosec²θ = 2

\implies{\rm } 2cos²θ + 2 × 1/cosec²θ = 2

\implies{\rm } 2cos²θ + 2 × sin²θ = 2

\implies{\rm } 2(cos²θ + sin²θ) = 2

\implies{\rm } 2 × 1 = 2

\implies{\rm } 2 = 2

\large\red{\texttt { Proved}}

Answered by Anonymous
98

AnswEr :-

1]

LHS

\sf (1-\sin^2\theta) \times sec^2\theta

\sf (1-\sin^2\theta)\times \dfrac{1}{cos\theta} \bigg(sec^2\theta = \dfrac{1}{cos^2\theta}\bigg)

\sf 1 - \sin^2\theta-\dfrac{1}{cos\theta}

\sf cos^2\theta \times \dfrac{1}{cos\theta}\bigg(1-sin^2= cos^2\bigg)

\sf 1

RHS

1

2]

LHS

\sf (1+tan^2\theta)\times cos^2\theta

\sf 1 + tan^2\theta\times cos^2\theta

\sf sec^2\theta\times cos^2\theta\bigg(1 + tan^2 = sec^2\bigg)

\sf sec^2 \theta \times \dfrac{1}{sec^2\theta}\bigg(cos^2 = \dfrac{1}{sec^2}\bigg)

\sf 1

RHS

\sf 1

3]

LHS

\sf 2cos^2\theta + \bigg(\dfrac{2}{1+cos^2\theta}\bigg)

\sf 2cos^2\theta +\bigg( \dfrac{2}{cosec^2\theta}\bigg)\bigg(1 + cot^2=cosec^2\bigg)

\sf 2cos^2\theta+\bigg(2\times\dfrac{1}{cosec^2\theta}\bigg)

\sf 2cos^2\theta+2sin^2\theta\bigg(\dfrac{1}{cosec^2}=sin^2\bigg)

\sf 2(cos^2 \theta+sin^2\theta)

\sf 2(1) \bigg(cos^2 + sin^2=1\bigg)

\sf 2

RHS

\sf 2

Similar questions