Math, asked by ramya3170, 1 year ago

prove that √1/sin²Theta -sin²theta -cos²theta =cot theta​

Answers

Answered by Anonymous
0

    \underline{\underline{\bf{ prove \: that }}} : -  \\  \\  \sqrt{ \frac{1}{ { \sin }^{2} \theta }  -  { \sin }^{2} \theta -  { \cos }^{2} \theta  }   =  \cot \theta \\  \\ \underline{ \underline{\bf{{step - by \: step \: explanation}}}} :  -  \\  \\

Firstly,take Left hand side (LHL)

 \rightarrow \:  \sqrt{ \frac{1}{ { \sin}^{2} \theta } -  { \sin }^{2}  \theta -  { \cos }^{2}  \theta }  \\  \\  \rightarrow \:  \sqrt{ \frac{1}{ { \sin}^{2}  \theta} - ( { \sin }^{2}  \theta +  { \cos }^{2}  \theta) }  \\  \\  \because \:   { \sin}^{2}  \theta +  { \cos }^{2}  \theta = 1 \\  \\  \therefore \\  \\  \rightarrow \:  \sqrt{ \frac{1}{ { \sin }^{2}  \theta}  - 1}  \\  \\  \rightarrow \:  \sqrt{ \frac{1 -  { \sin }^{2}  \theta}{ { \sin }^{2} \theta } }  \\  \\  \because \: 1 -  { \sin }^{2}  \theta \:  =  { \cos }^{2}  \theta \\  \\  \therefore \:  \\  \\  \rightarrow \sqrt{ \frac{ { \cos}^{2}  \theta}{ { \sin }^{2}  \theta} }  \\  \\  \rightarrow \:  \sqrt{ { \cot}^{2}  \theta}  \\  \\  \rightarrow \:  \cot \theta \\

Left hand side = Right hand side ,

Hence proved.

Similar questions