prove that √(1+sinA/1-sinA) + √(1-sinA/1+sinA) = 2secA.
Answers
Answered by
5
Answer:
Given:
The equation is,
√(1+sinA/1-sinA)+√(1-sinA/1+sinA)=2secA
To prove:
LHS=RHS
Solution:
First take LHS,
√(1+sinA/1-sinA)+√(1-sinA/1+sinA)
on rationalizing,
=√(1+sinA/1-sinA)×1+sinA/1+sinA)+√(1-sinA/1+sinA)×1-sinA/1-sinA)
=√(1+sinA)²/1-sin²A)+√(1-sin²A)/(1+sinA)²
=1+sinA/cosA+cosA/1+sinA
=(1+sinA)²+cos²A/cosA(1+sinA)
=1+sin²A+cos²A+2sinA/cosA (1+sinA)
=2+2sinA/cosA (1+sinA)
=2(1+sinA)/cosA(1+sinA)
=2/CosA
=2SecA
Hence proved.....
Step-by-step explanation:
Hope it helps you.......
Similar questions