Math, asked by s435741, 6 months ago

prove that 1+sinA/1-sinA=2(secA+tanA)​

Answers

Answered by snehaprajnaindia204
1

Answer:

 \frac{1 + sin \:  \alpha }{1 - sin \:  \alpha }  \times  \frac{1 + sin \:  \alpha }{1  + sin \:  \alpha }

 \frac{1 +  {sin}^{2}  \alpha  + 2sin \alpha \:  \alpha }{1 -  {sin}^{2} \alpha  }

 \frac{1 +  {sin}^{2} \alpha  + 2sin \:  \alpha  }{ {cos}^{2}  \alpha }

 { \sec }^{2}  \alpha  +  {tan}^{2} \alpha  + 2 \tan \alpha  \sec \alpha

(  \sec \alpha  +  \tan \alpha  ) {}^{2}

______

Hope it helps you

Answered by sandy1816
2

 \frac{1 + sinA}{1 - sinA}  \\  \\  =  \frac{( {1 + sinA})^{2} }{1 -  {sin}^{2}A }  \\  \\  =  \frac{( {1 + sinA})^{2} }{ {cos}^{2} A}  \\  \\  = ( \frac{1 + sinA}{cosA} )^{2}  \\  \\  = ( {secA + tanA})^{2}

Similar questions