Math, asked by ManjuGupta5990, 6 months ago

Prove that: 1+sinA/1-sinA= (secA+tanA)​ 2

Answers

Answered by Ataraxia
21

TO PROVE :-

\sf \dfrac{1+sinA}{1-sinA} = (secA+tanA)^2

SOLUTION :-

\sf L.H.S = \dfrac{1+sinA}{1-sinA}

Multiply numerator and denominator by \sf 1+ sinA .

        = \sf \dfrac{(1+sinA)(1-sinA)}{(1-sinA)(1+sinA)} \\\\= \dfrac{(1+sinA)^2}{1-sin^2A}

\bullet\bf \ 1-sin^2A = cos^2A

       = \sf \dfrac{(1+sinA)^2}{cos^2} \\\\= \left(\dfrac{1+sinA}{cos} \right) ^2 \\\\ = \left( \dfrac{1}{cos}+\dfrac{sinA}{cosA} \right)^2

\bullet\bf \ \dfrac{1}{cosA} = secA \\\\\bullet \bf \dfrac{sinA}{cosA} = tan A

        = \sf (secA+tanA)^2 \\\\= R.H.S

Hence proved .

Similar questions