Math, asked by rockstarruchir007, 9 months ago

prove that √{(1-sinA)/(1+sinA)}=secA-tanA​

Answers

Answered by pulakmath007
1

SOLUTION ::

LHS

= √(1 - sinA)/√(1 + sinA)

= √(1 - sinA) × √(1 - sinA)/√(1 -sinA)×√(1 +sinA)

= √(1 - SinA)²/√(1 -sin²A)

= (1 - sinA)/√cos²A

= (1 - sinA)/cosA

= 1/cosA - sinA/cosA

= SecA - tanA

= RHS

Hence the proof follows

Please Mark it Brainliest

Answered by kushalchauhan07
4

Step-by-step explanation:

l.h.s \:  =

 \frac{ \sqrt{1 - sin \: a} }{ \sqrt{1 + sin \: a} }  \times  \frac{ \sqrt{1 - sin \: a} }{ \sqrt{1 - sin \: a} }

 \frac{ \sqrt{(1 - sin \: a) ^{2} } }{ \sqrt{ 1 - sin ^{2}a }}

 \frac{(1 - sin \:  a )  }{cos  \: a }

 \frac{1}{cos \: a}  -  \frac{ \sin  \: a}{ \cos \: a }

sec \: a - tan \: a \:  \:  \ :( \frac{1}{cos \: a }  = sec :  \frac{sin \: a}{cos \: a}  = tan \: a)

 = r.h.s

Similar questions