Math, asked by ns708431, 6 months ago

prove that√((1+sinA)/(1-sinA))=secA+tanA​

Answers

Answered by pdipanshu816
2

according to question lhs are equal to rhs

Attachments:
Answered by Ataraxia
9

TO PROVE THAT :-

\sf \sqrt{\dfrac{(1+sinA)}{(1-sinA)}} = secA+tanA

SOLUTION :-

\sf L.H.S = \sqrt{\dfrac{(1+sinA}{(1-sinA)}}

Multiply the numerator and the denominator by \sf (1+sinA) .

        = \sf \sqrt{\dfrac{(1+sinA) \times (1+sinA)}{(1-sinA)  \times (1+sinA)}} \\\\= \sqrt{\dfrac{(1+sinA)^2}{(1-sin^2A)}}

\bullet\bf \ 1-sin^2A = cos^2A

        = \sf \sqrt{\dfrac{(1+sinA)^2}{cos^2A}}  \\\\ = \dfrac{1+sinA}{cosA}\\\\= \dfrac{1}{cosA}+\dfrac{sinA}{cosA}

\bullet\bf \ \dfrac{1}{cosA}= secA\\\\\bullet \dfrac{sinA}{cosA}= tanA

        = \sf secA+tanA \\\\= R.H.S

\therefore \sf R.H.S = L.H.S

Hence proved.

Similar questions