prove that: 1+sinA-cosA=√1-cosA/1+cosA
Answers
Step-by-step explanation:
Given : \frac{1+\sin\theta-\cos \theta}{1+\sin\theta+\cos \theta}= \sqrt{\frac{1-\cos\theta}{1+\cos\theta}}
1+sinθ+cosθ
1+sinθ−cosθ
=
1+cosθ
1−cosθ
Step-by-step explanation:
\begin{lgathered}\frac{1+\sin\theta-\cos \theta}{1+\sin\theta+\cos \theta}= \sqrt{\frac{1-\cos\theta}{1+\cos\theta}}\\\\\text{squaring both sides }\\\\(\frac{1+\sin\theta-\cos \theta}{1+\sin\theta+\cos \theta})^2=\frac{1-\cos\theta}{1+\cos\theta}\\\\\text{solving LHS by using identity} \\\\(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca\\\\(\frac{1+\sin\theta-\cos \theta}{1+\sin\theta+\cos \theta})^2\end{lgathered}
1+sinθ+cosθ
1+sinθ−cosθ
=
1+cosθ
1−cosθ
squaring both sides
(
1+sinθ+cosθ
1+sinθ−cosθ
)
2
=
1+cosθ
1−cosθ
solving LHS by using identity
(a+b+c)
2
=a
2
+b
2
+c
2
+2ab+2bc+2ca
(
1+sinθ+cosθ
1+sinθ−cosθ
)
2
\begin{lgathered}\\\\\frac{1+1+2\sin\theta-2\sin\theta\cos\theta-2\cos\theta}{1+1+2\sin\theta+2\sin\theta\cos\theta+2\cos\theta}\\\\\frac{2(1+\sin\theta)-2\cos\theta(1+\sin\theta)}{2(1+\sin\theta)+2\cos\theta(1+\sin\theta)}\\\\\frac{(1+\sin\theta)(2-2\cos\theta)}{(1+\sin\theta)(2+2\cos\theta)}\\\\\frac{2(1-\cos\theta)}{2(1+\cos\theta)}\\\\\frac{(1-\cos\theta)}{(1+\cos\theta)}\end{lgathered}
1+1+2sinθ+2sinθcosθ+2cosθ
1+1+2sinθ−2sinθcosθ−2cosθ
2(1+sinθ)+2cosθ(1+sinθ)
2(1+sinθ)−2cosθ(1+sinθ)
(1+sinθ)(2+2cosθ)
(1+sinθ)(2−2cosθ)
2(1+cosθ)
2(1−cosθ)
(1+cosθ)
(1−cosθ)
Answer:
Step-by-step explanation:
hope it help mark me