Math, asked by anish200297, 1 year ago

prove that 1+sinA-cosA/1+sinA+cosA=tan(A/2​

Answers

Answered by amrin10317
6

Answer:

Step-by-step explanation:

Answered by Zisha7
14

Answer:

1+sinA-cosA/1+sinA+cosA=tanA/2

Step-by-step explanation:

L.H.S

1+sinA-cosA/1+sinA+cosA×1+sinA-cosA/1+sinA-cosA

=((1+sinA)-cosA)²/(1+sinA)²-(cosA)1

=(1+sinA)1+cos²A-2(1-sinA)cosA/1+sin²A-2sinA-(1-sin²A)

=2+2sinA-2cosA-(1-sin²A)-2cosA-2sinAcosA/1+sin²A+2sinA

=2(1-cosA)(1+sinA)/2sinA(1+sinA)

2(1-cosA)(1+sinA)/2sinA(1+sinA)

=1-cosA/sinA

2sin²/2×A/2sinA/×cosA/2

since cos2x=1-2sin²x and sin 2x=2sinx cosx)

therefore tanA/2

R.H.S.

Similar questions