prove that: (1-sinA+cosA)²=2(1+cosA)(1-sinA)
Answers
Answered by
4
Answer:
Step-by-step explanation:
Attachments:
Answered by
4
(1-sinA+cosA)² = 2(1+cosA)(1-sinA)
using formula (a+b)^2 =a^2+b^2+2ab
(1-sinA)²+(cosA)²+2(1-sinA)(cosA)
now using formula (a-b)^2= a^2+ b^2-2ab
1+sin²A+cos²A+2(1-sinA)(cosA)
1+sin^2A-2sinA+cos^2A+2 cosA(1-sinA)
we know that sin^2A+cos^2A=1
1+1-2sinA+2cosA(1-sinA)
2-2sinA+2cosA(1-sinA)
2(1-sinA)+2cosA(1-sinA)
2(1-sinA)[1+cosA]
Similar questions