Prove that (1-sinA+cosA)^2=2(1-sinA)(1+cosA)
Answers
Answered by
0
1-2SinA+Sin^2A +Cos^2A+ 2(1-SinA).CosA
=1-2SinA + 1 +2CosA - 2SinA.CosA
=2-2SinA+2CosA-2×SinA.CosA
=2(1-SinA +CosA -SinA.CosA)
=2{1(1-SinA) +CosA(1-SinA)}
=2 (1-SinA)(1+CosA)
L.H.S =R.H.S proved
=1-2SinA + 1 +2CosA - 2SinA.CosA
=2-2SinA+2CosA-2×SinA.CosA
=2(1-SinA +CosA -SinA.CosA)
=2{1(1-SinA) +CosA(1-SinA)}
=2 (1-SinA)(1+CosA)
L.H.S =R.H.S proved
Anonymous:
mark it BRAINLIEST
Similar questions
Environmental Sciences,
7 months ago
Math,
7 months ago
History,
1 year ago
Math,
1 year ago
Physics,
1 year ago
Political Science,
1 year ago
Chemistry,
1 year ago