prove that(1-sina+cosa)sq=2(1+cosa)(1-sina)
Answers
Step-by-step explanation:
To prove --->
( 1 - SinA + CosA )² = 2 ( 1 + CosA ) ( 1 - SinA )
Proof --->
LHS = ( 1 - SinA + CosA )²
= { 1 + ( -SinA ) + CosA }²
We have an identity as follows
( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
Applying it here we get
= (1)²+(-SinA)²+(CosA)²+2(1)Cos) +2(1)(-SinA) + 2 (-SinA ) CosA
= 1 + (Sin²A + Cos²A) - 2SinA + 2CosA
- 2SinA CosA
We have an identity
Sin²θ + Cos²θ = 1 , applying it here ,we get
= 1 + 1 - 2SinA + 2CosA - 2 SinA CosA
= 2 - 2 SinA + 2CosA - 2SinA CosA
Taking 2 , common from first two terms and 2CosA , from next two terms , we get
= 2 ( 1 - SinA ) + 2CosA ( 1 - SinA )
= ( 1 - SinA ) ( 2 + 2CosA )
Taking 2 Common from second bracket , we get
= ( 1 - SinA ) 2 ( 1 + CosA )
= 2 ( 1 + CosA ) ( 1 - SinA ) = RHS
Additional information--->
(1) 1 + tan²θ = Sec²θ
(2) 1 + Cot²θ = Cosec²θ
Step-by-step explanation:
Consider the LHS:
(1-sinA+cosA)2 = [(1-sinA) + cosA]2
= (1-sinA)2 + cos2A + 2(1-sinA)
cosA = 1 + sin2A − 2sinA + cos2A + 2(1-sinA)cosA = 1 + (sin2A + cos2A) − 2sinA + 2(1-sinA)cosA = 1 + 1 − 2sinA + 2(1-sinA)cosA [Since, sin2A + cos2A =1] = 2 − 2sinA + 2(1-sinA)cosA = 2(1 − sinA) + 2(1-sinA)cosA = 2(1 − sinA)(1 + cosA) = RHS