Math, asked by achyut0394, 10 months ago

prove that : -1 +sinA sin(90 - A) / cot(90 - A) = -sin^2 A​

Attachments:

Answers

Answered by jayanr
6

Step-by-step explanation:

this how you do this question

Attachments:
Answered by kaushik05
108

 \huge \red{ \mathfrak{solution}}

To prove :

 \boxed{ \bold{ - 1 +  \frac{ \: sin  \theta \: sin(90 -  \theta)}{cot \: (90 -  \theta)}  =  -  {sin}^{2}  \theta}}

LHS

 \star \:  - 1  + \frac{sin \theta \: sin \: (90 -  \theta)}{cot \: (90 -  \theta)}  \\  \\  \star \:  - 1 +  \frac{sin \theta \: cos \theta}{tan \theta}  \\  \\  \star \:  - 1 +   \frac{sin \theta \ \: cos \theta }{ \frac{sin \theta}{cos \theta} }  \\  \\  \star \:  - 1 +  \frac{sin \theta \:  {cos}^{2} \theta }{sin \theta}  \\  \\  \star \:  - 1 +  \frac{ \cancel{sin \theta} \: cos ^{2}  \theta}{ \cancel{  sin \theta}}  \\  \\   \star \:  - 1 +  {cos}^{2} \theta \\  \\  \star  \:  \: -  {sin}^{2}  \theta

LHS = RHS

  \huge\boxed{ \blue{  \mathfrak{proved}}}

Formula used :

 \rightarrow sin(90 -  \alpha ) =  \cos( \alpha )  \\  \\  \rightarrow \:  \cot(90 -  \alpha )  =  \tan( \alpha )  \\ \\  \rightarrow \:  { \sin}^{2}  \alpha  +  { \cos}^{2}  \alpha  = 1

Similar questions