Math, asked by shubhampatelsaloniku, 5 hours ago

prove that:
|√1-sinQ÷1+sinQ+√1+sinQ÷1-sinQ|=-2÷cosQ , where π÷2 <Q<π​

Answers

Answered by LaeeqAhmed
2

 \sf    \sqrt{ \frac{1 -  \sin Q}{1 + \sin Q} } +  \sqrt{ \frac{1 +\sin Q }{1 -\sin Q } }

 \implies \sf    \sqrt{ \frac{1 -  \sin Q}{1 + \sin Q} \times \frac{1 -  \sin Q}{1  -  \sin Q} } +  \sqrt{ \frac{1 +\sin Q }{1 -\sin Q } \times\frac{1  +   \sin Q}{1 + \sin Q}  }

 \implies \sf    \sqrt{ \frac{(1 -  \sin Q )^{2} }{1  -  \sin ^{2}  Q}  } +  \sqrt{ \frac{(1 + \sin Q )^{2}  }{1 -\sin ^{2}  Q }  }

 \implies \sf    \sqrt{ \frac{(1 -  \sin Q )^{2} }{    \cos ^{2}  Q}  } +  \sqrt{ \frac{(1 + \sin Q )^{2}  }{\cos ^{2}  Q }  }

 \implies \sf    \sqrt{ (\frac{1 -  \sin Q  }{    \cos   Q}  ) ^{2} } +  \sqrt{ (\frac{1 + \sin Q   }{\cos  Q })  ^{2}  }

 \implies \sf     \frac{1 -  \sin Q  }{    \cos   Q}    +  \frac{1 + \sin Q   }{\cos  Q }

 \implies \sf     \frac{1 -  \sin Q + 1   + \sin Q  }{    \cos   Q}

  \therefore \sf     \frac{2 }{    \cos   Q}

\sf since\:  \frac{\pi}{2}&lt;Q &lt; \pi

\implies \sf \cos Q\: is\: negative

 \orange{ \therefore \sf     \frac{-2 }{    \cos   Q}   }

HOPE IT HELPS!

Similar questions