Math, asked by moniyashu95, 11 months ago

prove that (1-sintita+costita)square=2(1+costita)(1-sintita)​

Answers

Answered by mysticd
2

 LHS = ( 1 - sin\theta + cos \theta)^{2} \\= 1^{2} + sin^{2}\theta+ cos^{2}\theta- 2\times 1 \times sin\theta - 2 sin \theta \times cos \theta + 2cos\theta  \times 1

 \boxed  {\pink { (a+b+c)^{2} = a^{2} + b^{2} + c^{2} + 2ab+2bc+2ca }}

 = 1 + 1 - 2sin\theta - 2sin \theta cos\theta + 2cos\theta

\boxed { \orange { sin^{2} \theta + cos^{2}\theta = 1 }}

 = 2- 2sin\theta - 2sin \theta cos\theta + 2cos\theta

 = 2( 1- sin\theta )+ 2cos\theta ( 1 -sin\theta)

 = (1-sin\theta)( 2+2cos\theta) \\= 2(1-sin\theta)( 1+cos\theta)\\= RHS

 Hence \:proved .

•••♪

Similar questions