Math, asked by Rajivsinha43, 1 year ago

Prove that:-

(1-sinx)/(1+sinx)=(secx-tanx)^2.

Answers

Answered by Anonymous
36

 \huge \bf{HEY  \: FRIENDS!!}


----------------------------------------------------



 \huge \bf \underline{Here  \: is \:  your  \: answer↓}


⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇



 \huge \boxed{Prove  \:  \: that:-)}


 \bf =  >  \frac{1 -  \sin(x) }{1 +  \sin(x) }  =  {( \sec(x) -  \tan(x) )}^{2} .


 \huge \boxed{Solving \:  RHS.}


 \bf =  {( \sec(x) -  \tan(x) ) }^{2} .


 \bf = {( \frac{1}{ \cos(x) } -  \frac{ \sin(x) }{ \cos(x) })  }^{2}.


 \bf =  {( \frac{1 -  \sin(x) }{ \cos(x) } )}^{2} .


 \bf =  \frac{ {(1 -  \sin(x) )}^{2} }{ { \cos}^{2}(x)} .


 \bf =  \frac{ {(1 -  \sin(x)) }^{2} }{(1 - { \sin }^{2} (x)) } .


 \bf =  \frac{(1 -  \sin(x))(1 -  \sin(x)) }{(1 +  \sin(x) )(1 -  \sin(x) )} .


 \huge \bf =  \frac{1 -  \sin(x) }{1 +  \sin(x) } .


 \huge \bf \underline{RHS = LHS.}


✅✅ Hence, it is proved ✔✔.



 \huge \boxed{THANKS}


 \huge \bf \underline{Hope \:  it \:  is \:  helpful  \: for  \: you}

Rajivsinha43: nice nice nice answer
fanbruhh: nice
Answered by fanbruhh
31

 \huge \bf {hey}
 \huge \underline{here \: is \: the \: answer}
⬇⤵⏬

 \bf{ \frac{1 - sin(x)}{1 + sin(x)} = ( {secx - tanx}^{2}) }
 \huge{solving \: rhs}

 \bf{( {secx - tanx)}^{2} }


 { \frac{1}{cosx} }^{2} -  ({ \frac{sinx}{cosx} }^{2} )


(1-sinx)²/1-sin²x

  \bf{ \frac{(1 - sinx)(1 - sinx)}{(1 + sinx)(1 - sinx)} }



 \bf{ \frac{1 - sinx}{1 + sinx} }


 \huge \boxed{rhs = lhs}



 \huge{hence \: it \: is \: proved}
 \huge \underline{hope \:it \: helps}
 \huge{thanks}

Rajivsinha43: thanks
fanbruhh: my pleasure
fanbruhh: bro
Similar questions