Math, asked by vineshkumar8865, 7 months ago

prove that 1+ sinx- cosx/ 1+ sinx + cos x= tan x/2​

Answers

Answered by Anonymous
43

GIVEN:

  • (1 + sinx - cosx) / (1 + sinx + cos x) = tan x/2

TO PROVE:

  • (1 + sinx - cosx) / (1 + sinx + cos x) = tan x/2

EXPLANATION:

 \boxed{ \bold{ \large{ \gray{Sin \ 2x = 2sin \ x \ cos \ x}}}}

 \sf Sin \ x = 2sin \  \left \lgroup\dfrac{x}{2} \right \rgroup \ cos \ \left \lgroup\dfrac{x}{2} \right \rgroup

 \boxed{ \bold{ \large{ \gray{Cos\ 2x = 2cos^2\ x - 1}}}}

 \sf Cos\ x = 2cos^2\ \left \lgroup\dfrac{x}{2} \right \rgroup - 1

L.H.S : (1 + sinx - cosx) / (1 + sinx + cos x)

 \sf   \leadsto\dfrac{1 + sinx - cosx}{1 + sinx + cos x}

Substitute the value of sin x in both numerator and denominator and the value of cos x in denominator.

 \sf \leadsto\dfrac{1 + 2sin \  \left \lgroup\dfrac{x}{2} \right \rgroup \ cos \ \left \lgroup\dfrac{x}{2} \right \rgroup - cos \ x}{1 + 2sin \  \left \lgroup\dfrac{x}{2} \right \rgroup \ cos \ \left \lgroup\dfrac{x}{2} \right \rgroup + 2cos^2\ \left \lgroup\dfrac{x}{2} \right \rgroup - 1}

 \sf   \leadsto\dfrac{1 + 2sin \  \left \lgroup\dfrac{x}{2} \right \rgroup \ cos \ \left \lgroup\dfrac{x}{2} \right \rgroup - cos \ x}{2sin \  \left \lgroup\dfrac{x}{2} \right \rgroup \ cos \ \left \lgroup\dfrac{x}{2} \right \rgroup + 2cos^2\ \left \lgroup\dfrac{x}{2} \right \rgroup }

 \boxed{ \bold{ \large{ \gray{Cos\ 2x = 1 - 2sin^2\ x }}}}

 \sf Cos\ x = 1 - 2sin^2\ \left \lgroup\dfrac{x}{2} \right \rgroup

Substitute this value for cos x in numerator.

 \sf   \leadsto\dfrac{1 + 2sin \  \left \lgroup\dfrac{x}{2} \right \rgroup \ cos \ \left \lgroup\dfrac{x}{2} \right \rgroup - 1  + 2sin^2\ \left \lgroup\dfrac{x}{2} \right \rgroup }{2sin \  \left \lgroup\dfrac{x}{2} \right \rgroup \ cos \ \left \lgroup\dfrac{x}{2} \right \rgroup + 2cos^2\ \left \lgroup\dfrac{x}{2} \right \rgroup }

 \sf   \leadsto\dfrac{2sin \  \left \lgroup\dfrac{x}{2} \right \rgroup \ cos \ \left \lgroup\dfrac{x}{2} \right \rgroup+ 2sin^2\ \left \lgroup\dfrac{x}{2} \right \rgroup }{2sin \  \left \lgroup\dfrac{x}{2} \right \rgroup \ cos \ \left \lgroup\dfrac{x}{2} \right \rgroup + 2cos^2\ \left \lgroup\dfrac{x}{2} \right \rgroup }

 \sf   \leadsto\dfrac{sin \ \left \lgroup\dfrac{x}{2} \right \rgroup \ cos \ \left \lgroup\dfrac{x}{2} \right \rgroup+ sin^2\ \left \lgroup\dfrac{x}{2} \right \rgroup }{sin \  \left \lgroup\dfrac{x}{2} \right \rgroup \ cos \ \left \lgroup\dfrac{x}{2} \right \rgroup + cos^2\ \left \lgroup\dfrac{x}{2} \right \rgroup }

 \sf   \leadsto\dfrac{sin \  \left \lgroup\dfrac{x}{2} \right \rgroup \left(cos \ \left \lgroup\dfrac{x}{2} \right \rgroup+ sin\ \left\lgroup\dfrac{x}{2} \right \rgroup \right) }{cos \  \left \lgroup\dfrac{x}{2} \right \rgroup  \left(sin \ \left \lgroup\dfrac{x}{2} \right \rgroup + cos\ \left \lgroup\dfrac{x}{2} \right \rgroup \right) }

Cancel sin (x/2) and cos (x/2) in both numerator and denominator.

 \sf \leadsto\dfrac{sin \  \left \lgroup\dfrac{x}{2} \right \rgroup }{cos \  \left \lgroup\dfrac{x}{2} \right \rgroup}

\boxed{ \bold{ \large{ \gray{\dfrac{Sin \ x }{Cos \ x}= Tan x}}}}

 \sf \leadsto\dfrac{sin \ \left \lgroup\dfrac{x}{2} \right \rgroup }{cos \  \left \lgroup\dfrac{x}{2} \right \rgroup} = tan \  \left \lgroup\dfrac{x}{2} \right \rgroup

R.H.S : Tan (x/2)

L.H.S = R.H.S

 \sf   \leadsto\dfrac{1 + sinx - cosx}{1 + sinx + cos x}  = tan \  \left \lgroup\dfrac{x}{2} \right \rgroup

HENCE PROVED.

Similar questions