Prove that (1+ tan ) 2+(1+ cot)2=
(sec + cosec) 2
please help me in this question
Answers
Answer:
✧══════•❁❀❁•══════✧
To Proof:-
( 1 - Tan)² + ( 1 - Cot)² = (Sec - Cosec)²
Proof:-
L.H.S
⟹ ( 1 - Tan)² + (1 - Cot)²
⟹ ( 1 - Sin/Cos)² + (1 - Cos/Sin)²
⟹ (Cos - Sin)²/Cos² + (Sin - Cos)²/Sin²
⟹ (Cos - Sin)² ( 1/Cos² + 1/Sin²)
⟹ (Cos - Sin)² (Sin² + Cos²)/Cos²Sin²
⟹ (Cos - Sin)² /Cos²Sin²
⟹ ((Cos - Sin)/CosSin )²
⟹ (Cos/CosSin - Sin/CosSin)²
⟹ (1/Sin - 1/Cos)²
⟹ (Cosec - Sec)²
⟹ (Sec - Cosec)²
= R.H.S
HENCE PROVED!!
✧══════•❁❀❁•══════✧
To Proof:-
( 1 - Tan)² + ( 1 - Cot)² = (Sec - Cosec)²
Proof:-
L.H.S
⟹ ( 1 - Tan)² + (1 - Cot)²
⟹ ( 1 - Sin/Cos)² + (1 - Cos/Sin)²
⟹ (Cos - Sin)²/Cos² + (Sin - Cos)²/Sin²
⟹ (Cos - Sin)² ( 1/Cos² + 1/Sin²)
⟹ (Cos - Sin)² (Sin² + Cos²)/Cos²Sin²
⟹ (Cos - Sin)² /Cos²Sin²
⟹ ((Cos - Sin)/CosSin )²
⟹ (Cos/CosSin - Sin/CosSin)²
⟹ (1/Sin - 1/Cos)²
⟹ (Cosec - Sec)²
⟹ (Sec - Cosec)²
= R.H.S
HENCE PROVED!!
To Proof:-
( 1 - Tan)² + ( 1 - Cot)² = (Sec - Cosec)²
Proof:-
L.H.S
⟹ ( 1 - Tan)² + (1 - Cot)²
⟹ ( 1 - Sin/Cos)² + (1 - Cos/Sin)²
⟹ (Cos - Sin)²/Cos² + (Sin - Cos)²/Sin²
⟹ (Cos - Sin)² ( 1/Cos² + 1/Sin²)
⟹ (Cos - Sin)² (Sin² + Cos²)/Cos²Sin²
⟹ (Cos - Sin)² /Cos²Sin²
⟹ ((Cos - Sin)/CosSin )²
⟹ (Cos/CosSin - Sin/CosSin)²
⟹ (1/Sin - 1/Cos)²
⟹ (Cosec - Sec)²
⟹ (Sec - Cosec)²
= R.H.S
HENCE PROVED!!