Prove that (1+tan 2θ) (1-sin 2θ) (1+sin 2θ) =1.
Answers
Answered by
0
Answer:
Using the identities:
1
+
tan
2
θ
=
sec
2
θ
1
sec
θ
=
cos
θ
tan
θ
=
sin
θ
cos
θ
sin
2
θ
=
1
−
cos
2
θ
2
cos
2
θ
−
1
=
cos
2
θ
Start:
1
−
tan
2
θ
1
+
tan
2
θ
=
1
−
tan
2
θ
sec
2
θ
=
Split the numerator:
1
sec
2
θ
−
tan
2
θ
sec
2
θ
=
cos
2
θ
−
sin
2
θ
cos
2
θ
⋅
cos
2
θ
=
cos
2
θ
−
(
1
−
cos
2
θ
)
=
2
cos
2
θ
−
1
=
cos
2
θ
Similar questions
English,
4 months ago
Computer Science,
4 months ago
Hindi,
9 months ago
Biology,
9 months ago
English,
1 year ago