Math, asked by Anonymous, 8 months ago

prove that 1 + tan 2 A / 1 + cot2 A =tan2 A ​

Answers

Answered by harshitachandresh32
6

Answer:

hence proved.....

I hope it will help you...!!!

Attachments:
Answered by SujalSirimilla
8

\LARGE{\bf{\underline{\underline{TO \ FIND:-}}}}

  • \sf \dfrac{1+tan^2A}{1+cot^2A}=?

\LARGE{\bf{\underline{\underline{SOLUTION:-}}}}

\to \sf \dfrac{1+tan^2A}{1+cot^2A}

▣ We know that 1+cot²A=cosec²A and 1+tan²A=sec²A. Thus, substitute.

\to \sf \dfrac{sec^2A}{cosec^2A}

▣ We know that \sf cosecA=\dfrac{1}{sinA}  and  \sf secA=\dfrac{1}{cosA}. Thus, substitute.

\to \sf \dfrac{\dfrac{1}{cos^2A} }{\dfrac{1}{sin^2A} }

\to \sf \dfrac{sin^2A }{cos^2A }

▣ Here, \sf \dfrac{sin \theta }{cos \theta} = tan \theta. So, we can simplify the above equation as:

\to \sf{\red{tan^2A}}

∴ (1+tan²A)÷(1+cot²A) is equal to tan²A

Funadamental trigonometric identities:

\boxed{\substack{\displaystyle \sf sin^2 \theta+cos^2 \theta = 1 \\\\  \displaystyle \sf 1+cot^2 \theta=cosec^2 \theta \\\\ \displaystyle \sf 1+tan^2 \theta=sec^2 \theta}}

Similar questions