Math, asked by priyaj4gunjt, 1 year ago

Prove that 1-tan 2 o/cot 2 o-1=tan 2 0

Answers

Answered by ARoy
2
(1-tan2θ)/(cot2θ-1)
=(1-sin2θ/cos2θ)/(cos2θ/sin2θ-1)
={(cos2θ-sin2θ)/cos2θ}/{(cos2θ-sin2θ)/sin2θ}
={(cos2θ-sin2θ)/cos2θ}×{sin2θ/(cos2θ-sin2θ)}
=sin2θ/cos2θ
=tan2θ (proved)
Answered by Mathexpert
3
Given that
 \frac{1-tan2\theta}{Cot2\theta - 1}
We know that, 

Cot2θ can be written as 1/Tan2θ

\frac{1-tan2\theta}{ \frac{1}{Tan2\theta}  - 1}

\frac{1-tan2\theta}{  \frac{1-Tan2\theta}{Tan2\theta} }

\frac{1-tan2\theta}{1-Tan2\theta}*Tan2\theta}

Tan2\theta}


Mathexpert: This is incomplete.... how do I edit it?
taannaa: u want to edit it??
Mathexpert: Done it
Similar questions