Math, asked by CoruscatingGarçon, 1 year ago

Prove that









(1+tan^2A/1+cot^2A)=(1-tanA/1-cotA)^2

No spamming.. solve either LHS or RHS.. DON'T solve both

Answers

Answered by Anonymous
4

[Tex]\huge {\pink{SOLUTION }}[/tex].

L.H.S

1+tan^2A/1+cot^2A

=(1+sin^2A/cos2A)/(1+cos^2A/sin^2A)

=((cos^2A+sin^2A)/cos^2A)/(sin^2A+cos^2A)/sin^2A

=(1/cos^2A)/(1/sin^2A)

=1/cos^2A*sin^2A/1

=sin^2A/cos^2A

=tan^2A

M.H.S

(1-tanA/1-cotA)^2

=(1+tan^2A-2tanA)/(1+cot^2-2cotA)

=(sec^2A-2tanA)/(cosec^2A-2cosA/sinA)

=(sec^2A-2*sinA/cos A)/(cosec^2A-2cosA/sinA)

=(1/cos^2A-2sinA/cosA)/(1/sin^2A-2cosA/sinA)

=[(1-2sinAcosA)/cos^2A]/[(1-2cosAsinA)sin^2A]

=(1-2sinAcosA)/cos^2A*sin^2A/(1-2sinAcosA)

=sin^2A/cos^2A

=tan^2A

R.H.S

=tan^2A

Hence L.H.S=M.H.S=R.H.S

Answered by DhanurRelhan
27

✨SOLVING L.H.S ONLY✨

 \frac{1 +  { \tan }^{2} (a)}{1 +  { \cot }^{2} (a)}

 \frac{ {1}^{2}  +  { \tan }^{2} (a)}{ {1}^{2}  +  { \cot }^{2} (a)}

 \frac{ { \sec }^{2} (a)}{ { \csc }^{2} (a)}

 \frac{ { \sin }^{2}(a) }{ { \cos }^{2} (a)}

multiplying \:  \:  and  \:  \: dividing \:  \:  by \:  \:  \:  \:  \:  \:  \:  \:   \\  (1 -2 \sin( a)  \cos(a) )

 \frac{ (1 -2 \sin( a)  \cos(a) )}{ { \cos }^{2}(a) }  \times  \frac{ { \sin }^{2}(a) }{ (1 -2 \sin( a)  \cos(a) )}

( \frac{1}{ { \cos }^{2}(a) }  -  \frac{2 \sin(a) }{ \cos(a) } )( { \sin }^{2} (a) -  \frac{  \sin(a)  }{2 \cos(a) } )

( { \sec }^{2} (a) -  2\tan(a) )( \frac{1}{ { \csc }^{2} (a) - 2 \cot(a) }

 \frac{{1}^{2}  +  { \tan }^{2} (a) - 2 \tan(a) }{{1}^{2}  +  { \cot }^{2} - 2 \cot(a) }

 \frac{ ({1 -  \tan(a)) }^{2} }{ {(1 -  \cot(a) )}^{2} }

( \frac{ ({1 -  \tan(a) } }{ {(1 -  \cot(a) }} )^{2}

I could've multiplied and divide when I got sec^2/csc^2 .. after solving I realised that..

it took me so much time so please:-

FOLLOW

Similar questions