Math, asked by sanjeev595, 9 months ago

Prove that 1 - tan^2theeta / 1+tan^2 theete = (cos^2 theeta - sin^2 theeta)

Answers

Answered by hipsterizedoll410
0

Hey!

I'm using α in place of theta.

\frac{1-tan^{2}\alpha  }{1+tan^{2}\alpha  } = cos^{2}\alpha - sin^{2} \alpha

Solving L.H.S,

We know that,

tan\alpha =\frac{sin\alpha }{cos\alpha }

Now,

\frac{1-(\frac{sin\alpha }{cos\alpha })^{2}  }{1+(\frac{sin\alpha }{cos\alpha })^{2}  } \\\frac{1-(\frac{sin^{2}\alpha  }{cos^{2}\alpha}) }{1+(\frac{sin^{2}\alpha  }{cos^{2}\alpha})}\\ \frac{\frac{cos^{2}\alpha-sin^{2}\alpha    }{cos^{2}\alpha  } }{\frac{cos^{2}\alpha+sin^{2}\alpha    }{cos^{2}\alpha  } } \\\frac{cos^{2}\alpha-sin^{2}\alpha    }{cos^{2}\alpha+sin^{2}\alpha    }

We know that,

sin^{2} \alpha +cos^{2}\alpha  =1

Therefore,

cos^{2}\alpha  -sin^{2}\alpha = R.H.S

Similar questions