Math, asked by namra0402, 9 months ago

Prove that:-
(1+tan^3/1+tan) + tan -sec^2 =0

Answers

Answered by Mankuthemonkey01
5

To prove

\sf\frac{1 + tan^3\theta}{1 + tan\theta} + tan\theta - sec^2\theta = 0

Solution

Using a³ + b³ = (a + b)(a² + b² - ab), we can write

1 + tan³∅ = (1 + tan∅)(1 + tan²∅ - tan∅)

Hence, the expression becomes

\sf\frac{(1 + tan\theta)(1 + tan^2\theta - tan\theta)}{(1 + tan\theta)} + tan\theta - sec^2\theta

Cancelling (1 + tan∅) from both numerator and denominator,

\sf 1 + tan^2\theta - tan\theta + tan\theta - sec^2\theta

Cancel out tan∅ from negative tan∅

Also, we know that 1 + tan²∅ = sec²∅

So,

\sf sec^2\theta - sec^2\theta

= 0

Hence Proved.

Similar questions