English, asked by doingforit, 11 months ago

Prove that :

→ ( 1 + tan A ) ( 1 + tan B ) = 2 , if A + B = 45° .

Answers

Answered by Anonymous
11

Answer :

Step-by-step explanation:

For solution :

See the attachment.

Hence, it is proved.

Attachments:
Answered by Anonymous
2

\huge\blue{ ANSWER :-}

A+B=45°

tan(A+B)=tan45°

tan A+tan B /1-tan A tan B=1

tan A+ tan B=1-tan A+ tan B

\boxed{\huge{\bf{ADD\:\:1\:\: BOTH \:\: SIDE}}}

tan A + tan B + tan A + tan B +1=1+1

tan A(1+tan B)+1(1+ tan B)=2

\boxed{\huge{\bf{(1+tan B) (tan A+1}}}

\huge\purple{HENCE\:\:\:PROVED}

Similar questions