Math, asked by hemanthkvs99, 6 months ago

Prove that(1+ tan A-sec A)x (1+tan A + sec A) =2tanA

Answers

Answered by Ataraxia
18

To Prove :-

\sf (1+tanA-secA) \times (1+tanA+secA) = 2tanA

Solution :-

\sf L.H.S = (1+tanA-secA)\times (1+tanA+secA)

       = \sf ((1+tanA)-secA) \times ((1+tanA) +secA)

Using the identity ( a- b ) ( a + b ) = a² - b²

        = \sf (1+tan^2A)-sec^2A \\\\= 1+tan^2A+2tanA-sec^2A

\bullet \bf \ 1+tan^2A= sec^2A

        =\sf sec^2A+2tanA-sec^2A \\\\= 2tanA+sec^2A-sec^2A \\\\= 2tanA\\\\= R.H.S

Hence proved.

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Similar questions