Math, asked by palak289, 5 months ago

Prove that
(1 + tan A-sec A) x (1 + tanA + sec A)= 2 tan A​

Answers

Answered by sweetymurmu
2

Step-by-step explanation:

L.H.S

(1+tanA−secA)×(1+tanA+secA)

=(1+tanA)2−(secA)2          [∵(a+b)(a−b)=a2−b2)]

=1+tan2A+2tanA−sec2A

=sec2A+2tanA−sec2A      [∵sec2θ=1+tan2θ]

=2tanA

=R.H.S.

∴L.H.S=R.H.S

(1+tanA−secA)×(1+tanA+secA)=2tanA

Hence proved.

Answered by ItzMissKomal
0

Answer:

  • REFER TO THE ATTACHMENT
Attachments:
Similar questions