Prove that
(1 + tan A-sec A) x (1 + tanA + sec A)= 2 tan A
Answers
Answered by
2
Step-by-step explanation:
L.H.S
(1+tanA−secA)×(1+tanA+secA)
=(1+tanA)2−(secA)2 [∵(a+b)(a−b)=a2−b2)]
=1+tan2A+2tanA−sec2A
=sec2A+2tanA−sec2A [∵sec2θ=1+tan2θ]
=2tanA
=R.H.S.
∴L.H.S=R.H.S
(1+tanA−secA)×(1+tanA+secA)=2tanA
Hence proved.
Answered by
0
Answer:
- REFER TO THE ATTACHMENT
Attachments:
Similar questions