prove that 1-tan raise to the power 4 theta divided by 1+ tan raise to the power 4 theta= cos theta+ sin theta divided by cos theta - sin theta
Answers
, proved.
Step-by-step explanation:
To prove that, .
L.H.S.
=
=
=
=
Using the algebraic identity,
=
Using the trigonometric identity,
=
=
R.H.S. =
=
=
Using the trigonometric identity,
and
Hence, , proved.
Answer:
\dfrac{1-\tan^4 \theta}{1+\tan^4 \theta} =\dfrac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}
1+tan
4
θ
1−tan
4
θ
=
cosθ−sinθ
cosθ+sinθ
, proved.
Step-by-step explanation:
To prove that, \dfrac{1-\tan^4 \theta}{1+\tan^4 \theta} =\dfrac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}
1+tan
4
θ
1−tan
4
θ
=
cosθ−sinθ
cosθ+sinθ
.
L.H.S.=\dfrac{1-\tan^4 \theta}{1+\tan^4 \theta}=
1+tan
4
θ
1−tan
4
θ
= \dfrac{1-\dfrac{\sin^4 \theta}{\cos^4 \theta}}{1+\dfrac{\sin^4 \theta}{\cos^4 \theta}}
1+
cos
4
θ
sin
4
θ
1−
cos
4
θ
sin
4
θ
= \dfrac{\cos^4 \theta-\sin^4 \theta}{\cos^4 \theta+\sin^4 \theta}
cos
4
θ+sin
4
θ
cos
4
θ−sin
4
θ
= \dfrac{(\cos^2 \theta)^2-(\sin^2 \theta)^2}{(\cos^2 \theta)^2+(\sin^2 \theta)^2}
(cos
2
θ)
2
+(sin
2
θ)
2
(cos
2
θ)
2
−(sin
2
θ)
2
= \dfrac{(\cos^2 \theta+\sin^2 \theta)(\cos^2 \theta-\sin^2 \theta)}{(\cos^2 \theta)^2+(\sin^2 \theta)^2}
(cos
2
θ)
2
+(sin
2
θ)
2
(cos
2
θ+sin
2
θ)(cos
2
θ−sin
2
θ)
Using the algebraic identity,
a^{2}-b^{2}=(a+b)(a-b)a
2
−b
2
=(a+b)(a−b)
= \dfrac{(1)(\cos^2 \theta-\sin^2 \theta)}{(\cos^2 \theta+\sin^2 \theta)^2-2\cos^2 \theta\sin^2 \theta}
(cos
2
θ+sin
2
θ)
2
−2cos
2
θsin
2
θ
(1)(cos
2
θ−sin
2
θ)
Using the trigonometric identity,
\sin^2 A+\cos^2 A = 1sin
2
A+cos
2
A=1
= \dfrac{(\cos \theta+\sin \theta)(\cos \theta-\sin \theta)}{(1)^2-2\cos^2 \theta.\sin^2 \theta}
(1)
2
−2cos
2
θ.sin
2
θ
(cosθ+sinθ)(cosθ−sinθ)
= \dfrac{1+\sin 2\theta}{\cos 2\theta}
cos2θ
1+sin2θ
R.H.S. = \dfrac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}
cosθ−sinθ
cosθ+sinθ
= \dfrac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}\times \dfrac{\cos \theta+\sin \theta}{\cos \theta+\sin \theta}
cosθ−sinθ
cosθ+sinθ
×
cosθ+sinθ
cosθ+sinθ
= \dfrac{(\cos \theta+\sin \theta)^2}{\cos^2 \theta-\sin^2 \theta}
cos
2
θ−sin
2
θ
(cosθ+sinθ)
2
=\dfrac{\cos^2 \theta+\sin^2 \theta+2\sin \theta\cos \theta}{\cos^2 \theta-\sin^2 \theta}=
cos
2
θ−sin
2
θ
cos
2
θ+sin
2
θ+2sinθcosθ
Using the trigonometric identity,
\sin 2A=2\sin A\cos Asin2A=2sinAcosA and
\cos 2A=\cos^2 A-\sin^2 Acos2A=cos
2
A−sin
2
A
= \dfrac{1+\sin 2\theta}{\cos 2\theta}=
cos2θ
1+sin2θ
Hence, \dfrac{1-\tan^4 \theta}{1+\tan^4 \theta} =\dfrac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}
1+tan
4
θ
1−tan
4
θ
=
cosθ−sinθ
cosθ+sinθ
, proved.