Math, asked by RiddhiA2248, 1 year ago

Prove that (1+tan square A) (cot A) /cosec square A=tan A

Answers

Answered by dloukya7
33

Hope you'll find it helpful!!

Attachments:
Answered by rowboatontario
5

\frac{(1+\text{tan}^{2} A)(\text{cot A})}{\text{cosec}^{2} A }  = \text{tan A}

Step-by-step explanation:

We are prove the following trigonometric expression below;

\frac{(1+\text{tan}^{2} A)(\text{cot A})}{\text{cosec}^{2} A }  = \text{tan A}

Taking the left-hand of the expression;

\frac{(1+\text{tan}^{2} A)(\text{cot A})}{\text{cosec}^{2} A }  

As we know that 1+\text{tan}^{2} A = \text{sec}^{2} A, \text{cot A} = \frac{1}{\text{tan A}}  and  \text{cosec A} = \frac{1}{\text{sin A}}, so using these we get;

\frac{\text{sec}^{2} A \times \frac{1}{\text{tan A}}  }{\frac{1}{\text{sin}^{2} A }  }  =  \frac{\frac{1}{\text{cos}^{2}  A} \times \frac{1}{\text{tan A}}  }{\frac{1}{\text{sin}^{2} A }  }      {as \text{sec A} = \frac{1}{\text{cos A}} }

                  =  \frac{1}{\text{cos}^{2}  A} \times \frac{1}{\text{tan A}}  } \times {\frac{\text{sin}^{2} A}{1 }  }

                  =  \frac{\text{sin}^{2} A}{\text{cos}^{2}  A} \times \frac{1}{\text{tan A}}  }

Now, as we know that \text{tan A} = \frac{\text{sin A}}{\text{cos A}}, so;

    =  \text{tan}^{2} A \times \frac{1}{\text{tan A}}  }  

    =  tan A = RHS

Hence, it is proved that \frac{(1+\text{tan}^{2} A)(\text{cot A})}{\text{cosec}^{2} A }  = \text{tan A} .

Similar questions