Math, asked by massvisual349, 4 months ago

Prove that (1+ tan square tita) (1-sin tita) (1+sin tita) =1​

Attachments:

Answers

Answered by harandayadav333
1

Step-by-step explanation:

see the pic it will clear your dout

Attachments:
Answered by Anonymous
1

Step-by-step explanation:

\sf{first\:we\:do\:step\:by\:step}

\sf{1 + tan^2\theta = 1 +  \frac{sin^2\theta}{cos^2\theta}  =  \frac{sin^2\theta + cos^2\theta}{cos^2\theta} =  \frac{1}{cos^2\theta}  }

\sf{we\:know\:that\: = (a + b)(a - b) = a^2 - b^2}

\sf{(1 - sin\theta)(1 + sin\theta) = 1 - sin^2\theta = cos^2\theta}

\sf{then\:(1 + tan^2\theta)(1 - sin^2\theta)(1 + sin^2) =  \frac{\cancel{cos^2\theta}}{\cancel{cos^2\theta}} } = 1

Similar questions