Math, asked by mdarman9631, 1 year ago

Prove that
1-tan×tan÷cot×cot-1=tan×tan

Answers

Answered by Kunalgupta321
1
hope its helps u bro
Attachments:
Answered by BrainlySatellite51
41

\; \star \; {\underline{\boxed{\pmb{\orange{\frak{ To Prove\; :- }}}}}}

\sf \longmapsto{ \dfrac{ 1 -  \tan {}^{2}  }{ \cot {}^{2} - 1 }  =  \tan {}^{2} }

\begin{gathered}\begin{gathered} \\ \\ \end{gathered} \end{gathered}

\; \star \; {\underline{\boxed{\pmb{\purple{\frak{ \; SolutioN \; :- }}}}}}

\begin{gathered}\begin{gathered} \\ \end{gathered}\end{gathered}

 \begin{gathered}\begin{gathered} \; \longmapsto \; \sf { \dfrac{1 -  \tan {}^{2}  }{ \cot {}^{2} - 1 } } \\ \\ \end{gathered}\end{gathered}

 \begin{gathered}\begin{gathered} \; \longmapsto \; \sf { \dfrac{1 - \dfrac{  \sin {}^{2}}{ \cos  {}^{2}  }  }{  \dfrac{\cos{}^{2}}{ \sin {}^{2} } - 1 } } \\ \\ \end{gathered}\end{gathered}

 \begin{gathered}\begin{gathered} \; \longmapsto \; \sf { \dfrac{ \dfrac{   \cos { }^{2}  - \sin {}^{2}}{ \cos  {}^{2}   }  }{  \dfrac{\cos{}^{2}  -  \sin {}^{2} } { \sin {}^{2} } } } \\ \\ \end{gathered}\end{gathered}

 \begin{gathered}\begin{gathered} \; \longmapsto \; \sf { \dfrac{ \dfrac{    \cancel{\cos { }^{2}  - \sin {}^{2}}}{ \cos  {}^{2}   } }{  \dfrac{ \cancel{\cos{}^{2}  -  \sin {}^{2}} } { \sin {}^{2} } } } \\ \\ \end{gathered}\end{gathered}

 \begin{gathered}\begin{gathered} \; \longmapsto \; \sf { \dfrac{ \dfrac{   1}{ \cos  {}^{2}   } }{  \dfrac{ 1 } { \sin {}^{2} } } } \\ \\ \end{gathered}\end{gathered}

 \begin{gathered}\begin{gathered} \; \longmapsto \; \sf { \dfrac{ {   1}{ } }{    \cos {}^{2}  }  \times  \sin {}^{2} } \\ \\ \end{gathered}\end{gathered}

 \begin{gathered}\begin{gathered} \; \longmapsto \; \sf { \dfrac{ {    \sin {}^{2} }{ } }{    \cos {}^{2}  } } \\ \\ \end{gathered}\end{gathered}

 \begin{gathered}\begin{gathered} \; \longmapsto \; \sf { {    \tan {}^{2}   } } \\ \\ \end{gathered}\end{gathered}

Hence Proved.

\begin{gathered}\begin{gathered} \\ {\underline{\rule{300pt}{9pt}}} \end{gathered} \end{gathered}

Similar questions