Prove that
(1- tan theta / 1- cot theta )² = tan ² theta
Answers
Answered by
7
Here I am using A instead of theta.
LHS =(1- tanA / 1- cot A )²
=[ (1-tanA)/(1-1/tanA)]²
= [(1-tanA)/{(tanA-1)/tanA}]²
=[(1-tanA)tanA]²/[-(1-tanA)]²
= [(1-tanA)²tan²A]/(1-tanA)²
After cancellation, we get
= tan²A
=RHS
••••
Similar questions